Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 477
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 142-151, 2024.
Article in Chinese | WPRIM | ID: wpr-1003776

ABSTRACT

ObjectiveBioinformatics methods were used to systematically identify the Salvia miltiorrhiza terpenoid synthase (SmTPS) gene family members and predict their functions from the perspective of the genome. MethodThe genome and transcriptome data of S. miltiorrhiza, Arabidopsis thaliana, and tomato were obtained from the national genomics data center (NGDC), national center for biotechnology information (NCBI), the Arabidopsis information resource (TAIR), and tomato functional genomics database (TFGD), and the whole genome identification and bioinformatics analysis of the SmTPS gene family member were carried out with the help of Perl language programming, Tbtools, and other bioinformatics tools. ResultA total of 52 TPS gene family members were identified, and they were distributed on eight chromosomes of S. miltiorrhiza. Their coding amino acid number was 207-822 aa. The isoelectric points were 4.76-9.16. The molecular mass was 24.11-94.81 kDa, and all members are hydrophilic proteins. Gene structure analysis showed that there were significant differences in the number of introns among different subfamilies. The number of introns in 72.6% of TPS-a, b, and g subfamilies was 6, and that in 88.9% of TPS-c and e/f subfamilies was more than 10. Protein motifs were conserved among TPS subfamilies. The analysis of promoter cis-acting elements showed that all promoters of the SmTPSs contained a large number of light-responsive elements, and most of them had hormone-responsive elements. Gene expression analysis showed that SmTPS gene family members exhibited tissue-specific expression, and 24 of them responded to exogenous methyl jasmonate. ConclusionBased on the published S. miltiorrhiza genome, 52 SmTPS gene family members were identified, and their functions were predicted based on the phylogenetic analysis and expression patterns. This paper provides reference information for the further biosynthesis pathway and regulatory mechanism analysis of terpenoids in S. miltiorrhiza.

2.
Chinese Journal of Pharmacology and Toxicology ; (6): 524-525, 2023.
Article in Chinese | WPRIM | ID: wpr-992206

ABSTRACT

Pain is one of the most serious problems plaguing human health today.Drug therapy is one of the main ways to treat pain in clinic.The analgesic drugs commonly used in clinical treatment of pain are often accompanied by many side effects,the analgesic effect is still not ideal.Salvia miltiorrhiza is a traditional medici-nal material with the same origin as food and medicine.It has the functions of promoting blood circulation and removing blood stasis,relieving pain through menstrual circulation,and contains many effective ingredients such as tanshinone and salvianolic acid.Tanshinone is a kind of rosin diterpenoid compound,which mainly consists of o-quinone type and p-quinone type parent nucleus,and tanshinone Ⅱ A is the representative compound.The pharmacological mechanism of tanshinone ⅡA in labor pain mainly includes:① Regulate inflammatory factors.Inflammatory cytokines played an important role in the occurrence and progression of pain.It was found that the analgesic effect of tanshinone ⅡA was related to the anti-inflammatory effect.Tanshinone ⅡA showed anti-injuri-ous activity in various pain models,such as bone cancer pain and sciatic nerve ligation,and related studies found that tanshinone ⅡA could inhibit the expression of inflammatory factors TNF-α,IL-1β and IL-6 in the spinal cord of model rats.In the spinal nerve ligation model,tanshinone ⅡA also promoted the release of anti-inflam-matory cytokine IL-10 in the spinal cord of rats.② Regu-late signal pathways related to regulating spinal cord oxi-dation and apoptosis.Apoptosis and oxidation played an important role in the process of pain.When nerve injury was caused by stimulation,oxidative stress and apopto-sis of nerve cells were involved in the mechanism of hyperalgesia.Tanshinone ⅡA sodium sulfonate could relieve pain by regulating apoptosis-related pathways.In neuralgia model,tanshinone ⅡA could reduce the apop-tosis of spinal cord neurons by inhibiting oxidative stress response in rat spinal cord tissue.In addition,tanshinone ⅡA also decreased the expression of pro-apoptotic protein in spinal dorsal horn of CCI rats.They included caspase-3,Bcl-2,Bax protein,and enhancer binding protein homologous protein,Increased the expres-sion of anti-apoptosis protein Bcl-2.③ Inhibit the activa-tion of spinal cord glial cells.tanshinone ⅡA could exert its labor pain effect by inhibiting the activation of astro-cytes,including inhibiting the expression of chemo-therapy-induced neuralgia,inflammatory pain and inflam-matory cytokines IL-6,IL-1β and TNF-α,and inhibiting the activation of inflammatory signaling pathways related to astrocyte activation.Such as NF-κB signaling path-way,c-Jun N-terminal kinase signaling pathway,etc.In addition,tanshinone ⅡA also inhibited the activation of microglia by inhibiting the expression of CX3CR1 receptor on the surface of microglia and inhibiting the phosphoryla-tion of ERK,JNK and p38 signaling pathways.④ Decr-ease the expression of glutamate receptors in spinal cord.NMDA is an ionic glutamate receptor in the central nervous system,and its subunit NR2B is closely related to pain.The overexpression of NR2B in spinal cord could lead to the decrease of pain threshold,which was an important mechanism of pain generation.The mechani-cal threshold and thermal threshold of CCI rats were increased by tanshinone ⅡA,and the expression of spi-nal dorsal horn 2B subunit was significantly decreased after tanshinone ⅡA treatment in CCI rats.Therefore,it was concluded that the analgesic effect of tanshinone ⅡA on CCI model may be related to the decreased expres-sion of NR2B in spinal dorsal horn.In conclusion,tanshi-none ⅡA can effectively play the role of labor pain,and has great potential for development in the field of medi-cine and health products.

3.
China Journal of Chinese Materia Medica ; (24): 39-44, 2023.
Article in Chinese | WPRIM | ID: wpr-970499

ABSTRACT

Wilt disease is a major disease of cultivated Salvia miltiorrhiza, which is caused by Fusarium oxysporum. Since the infection process of F. oxysporum in plants is affected by environment factors, this study was conducted to reveal the relationship between disease severity and concentration of the pathogen in plants in the infection process of F. oxysporum in seedlings of S. miltiorrhiza by pot experiments and to reveal the effects of temperature and humidity on the infection process. The results showed that, after inoculation of S. miltiorrhiza seedlings with F. oxysporum, the pathogen in different parts was detected at different time, and it was first detected in substrates. With the continuous propagation of the pathogen(4-5 d), it gradually infected the roots and stems of the seedlings, and the plants had yellowing leaves and withering. The number of the pathogen reached the maximum in each part after 7-8 d, and then gradually decreased in the later stage of the disease. The concentration of the pathogen in substrates, roots and stems of S. miltiorrhiza showed a trend of decreasing after increasing with the aggravation of the disease and reached the maximum in the samples of moderate morbidity, while the concentration in the samples of severe morbidity decreased. In addition, the infection of F. oxysporum in seedlings of S. miltiorrhiza was affected by temperature and humidity. The suitable temperature was 25-30 ℃ and the suitable humidity was 80%-90%. This study could provide guidance for the experiments on pathogenicity of F. oxysporum, screening of biocontrol bacteria and controlling of wilt.


Subject(s)
Seedlings/microbiology , Salvia miltiorrhiza , Temperature , Humidity , Fusarium
4.
China Journal of Chinese Materia Medica ; (24): 349-355, 2023.
Article in Chinese | WPRIM | ID: wpr-970471

ABSTRACT

The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza/chemistry , Plant Growth Regulators/analysis , Plant Roots/chemistry
5.
Acta Pharmaceutica Sinica ; (12): 454-464, 2023.
Article in Chinese | WPRIM | ID: wpr-965703

ABSTRACT

Superoxide dismutase (SOD) is a key enzyme that scavenge superoxide anion free radical (O2·-) in vivo, and plays an important role in plant growth and development and stress. In this study, according to the genome and transcriptome data of Salvia miltiorrhizae, 9 SOD genes were identified and the expression patterns of SOD family genes were further analyzed, including 5 Cu/Zn-SOD, 2 Fe-SOD and 2 Mn-SOD. On the basis of proteomic analysis, combined with transcriptome data, one full-length cDNA of Mn-SOD gene, namely SmMSD2 was cloned from Salvia miltiorrhizae. The results of amino acid sequence alignment and phylogenetic analysis showed that SmMSD2 protein belongs to the manganese superoxide dismutase (Mn-SOD) subfamily, and SmMSD2 protein shares high sequence identity with the Mn-SOD proteins of various plants that all contain a C-terminal conserved metal-binding domain "DVWEHAYY". The prokaryotic expression vector pMAL-c2X-SmMSD2 was constructed and transformed into E. coli BL21 expressing strain, and the target recombinant protein was successfully induced and its enzymatic properties were analyzed. Spatiotemporal expression analysis showed that SmMSD2 gene was expressed in all tissues, indicating that SmMSD2 gene was constitutively expressed at a stable level. Real-time quantitative PCR indicated that drought (15% PEG6000), abscisic acid (ABA) and indole-3-acetic acid (IAA) could induce the expression of SmMSD2 gene, suggesting that SmMSD2 may be involved in the response of Salvia miltiorrhizae to abiotic stress such as drought, as well as the signaling pathways of phytohormone ABA and IAA. These results lay the foundation for further elucidating the involvement of superoxide dismutase in the stress response and accumulation of active components of Salvia miltiorrhiza.

6.
Acta Pharmaceutica Sinica ; (12): 139-148, 2023.
Article in Chinese | WPRIM | ID: wpr-964294

ABSTRACT

This study investigated the intervention effect of Guanxinning Tablet on human umbilical vein endothelial cells (HUVECs) injury induced by oxidized low density lipoprotein (ox-LDL), providing experimental basis for Guanxinning Tablet in the treatment of atherosclerosis-related diseases. Under the damage of HUVECs by ox-LDL, the cell viability was detected by CCK-8 (cell counting kit-8) assay; lactate dehydrogenase (LDH) in the cell culture supernatant was detected by the corresponding kit; the cell morphology of different groups was observed by common phase contrast microscope; reactive oxygen species (ROS) and NO levels in the cells were detected by DCFH-DA and DAF-FM DA probes, respectively; monocyte adhesion assay was used to detect the recruitment of THP-1 in HUVECs, and TMRM dye was used to detect the level of mitochondrial membrane potential; interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) secretion in the cells was detected by ELISA assay. The results showed that Guanxinning Tablet had a concentration-dependent proliferative effect on HUVECs. Under the stimulation of 100 μg·mL-1 ox-LDL, the morphology of endothelial cells was significantly changed. At this time, NO level was significantly decreased, ROS level was significantly increased and accompanied by a decrease in mitochondrial membrane potential. The recruitment of THP-1 cells by endothelial cells and IL-6, ICAM-1 and MCP-1 were also significantly increased, resulting in oxidative stress and inflammatory injury. Guanxinning Tablet and its composed extracts could significantly improve cell morphology, increase NO level, decrease ROS production, and also reduce the secretion of inflammation-related proteins IL-6 and MCP-1. Salvia miltiorrhiza and Ligusticum striatum DC. have significant synergistic effects on NO. Among them, salvianolic acid B and salvianic acid A exerted the main effects, and the combined efficacy of salvianic acid A and ferulic acid was superior to that of single administration. The above results showed that Guanxinning Tablet and their active substances had the effects of improving endothelial basal function, resisting oxidative stress, and alleviating inflammatory injury, and Salvia miltiorrhiza and Ligusticum striatum DC. synergized, which may be related to their regulation of oxidative stress and inflammation and have application prospects in the treatment of atherosclerosis-related diseases.

7.
Acta Pharmaceutica Sinica ; (12): 208-216, 2023.
Article in Chinese | WPRIM | ID: wpr-964288

ABSTRACT

It is of great significance to apply the nanocrystals self-stabilized Pickering emulsion (NSSPE) to traditional Chinese medicine (TCM) compounds, and to study the effect of NSSPE on the oral absorption of various components with different solubility and permeability. In the study, NSSPE of Tongmai prescription was prepared by the high pressure homogenization method with nanocrystals of main active components (puerarin, ferulic acid, salvianolic acid B and tanshinone IIA) of Tongmai prescription as solid particle stabilizers and a mixture of Ligusticum chuanxiong essential oil and Labrafil M 1944 CS as oil phase. The NSSPE had better physical stability than nanocrystals suspension and blank emulsion. The adsorption of nanocrystals on the surface of oil droplets was confirmed by scanning electron microscopy and fluorescence microscopy. The surface adsorption rates of puerarin, ferulic acid, salvianolic acid B and tanshinone ⅡA in NSSPE were 15.40% ± 3.19%, 15.39% ± 5.07%, 10.97% ± 3.70% and 31.51% ± 1.60%, respectively. When solid active components were prepared into nanocrystals suspension, the cellular uptake and transport across Caco-2 cells were increased significantly for puerarin and tanshinone IIA. The uptake rates of ferulic acid, ligustilide and tanshinone IIA in NSSPE were further increased compared with the physical mixture of nanocrystals suspension and oil, and the transports of ligustilide and tanshinone IIA were also significantly improved. The main absorption mechanisms of NSSPE were passive diffusion and caveolin-mediated endocytosis, which were determined mainly by the microstructure of NSSPE. In conclusion, NSSPE could be applied to complicated TCM. The "micro" and "nano" synergistic microstructure with drug nanocrystals adsorbed on the surface of micron-sized oil droplets could not only improve the physical stability of NSSPE, but also promote the absorption of various components in NSSPE, which made NSSPE a promising oral drug delivery system for TCM.

8.
Acta Pharmaceutica Sinica ; (12): 2818-2828, 2023.
Article in Chinese | WPRIM | ID: wpr-999016

ABSTRACT

italic>Salvia miltiorrhiza Bunge is a traditional Chinese medicinal herb widely used to treat cardiovascular and cerebrovascular diseases at clinic. Its main water-soluble components are rosmarinic acid (RA) and salvianolic acid B (SAB), which are produced by phenylpropanoid pathway. 4-Hydroxyphenylpyruvate reductase (HPPR) is a key enzyme in phenylpropanoid metabolism pathway. SmHPPR1 was cloned from S. miltiorrhiza and was constructed into plant expression vector pJR-SmHPPR1. On this basis, SmHPPR1 transgenic Arabidopsis plants were induced and the content of 4-hydroxyphenyllactic acid (pHPL) was determined. SmHPPR1-overexpressing (SmHPPR1-OE) hairy roots of S. miltiorrhiza were obtained and the concentration of active components and transcriptome analysis were performed. The results showed that the concentration of pHPL in SmHPPR1 transgenic Arabidopsis T1 was 0.594 mg·g-1 dry weight. The concentration of RA, SAB and total salvianolic acid in SmHPPR1-OE-3 hairy roots were 1.09, 1.29, 1.15 times of that in control-3, respectively, and the content of Danshensu was 36.26% of that in control-3. Transcriptomic analysis revealed that overexpression of SmHPPR1 caused the upregulation of other phenylpropanoid pathway genes like SmTAT2. Protein-protein interaction indicated CYT (TR74706_c0_g1), NADP+ (TR26565_c0_g1) and NADP+ (TR68771_c0_g1) is the central node of the network and participated in metabolic process and cellular process. The tracking work in this study proved that SmHPPR1 could catalyze the reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid in SmHPPR1 transgenic Arabidopsis, and SmHPPR1-overexpressing in hairy roots of S. miltiorrhiza could increase the concentration of salvianolic acids through synergistically regulating other pathway genes.

9.
Rev. chil. nutr ; 49(5)oct. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1407836

ABSTRACT

RESUMEN La chía (Salvia hispanica L.) es una semilla originaria de la zona sur de México y Guatemala, que se ha expandido a otros países de latinoamérica. Esta semilla ha sido utilizada con diferentes fines a lo largo de la historia, donde se destaca como producto alimentario debido a su gran versatilidad, ya que puede ser utilizada como semilla, harina integral, fracciones de fibra y/o proteína y aceite. En la actualidad, la investigación de nuevas fuentes alimentarias que otorguen beneficios a la salud ha logrado recopilar información sobre la composición química y valor nutricional de esta semilla y sus derivados (harina y aceite), donde se encuentra principalmente el contenido de ácidos grasos poli-insaturados n-3, destacando el ácido alfa linolénico (C18:3n-3, ALA), que se propone como fuente alternativa de este nutriente a alimentos de otros orígenes, además el contenido de fibra de la chía, principalmente fibra insoluble. En cuanto a los beneficios que se asocian al consumo de chía, se ha visto que tiene estrecha relación con enfermedades crónicas no transmisibles como dislipidemia, diabetes, hipertensión, cáncer, entre otras, logrando captar la atención de investigadores para controlar y prevenir estas patologías que van en aumento en la población mundial. Por lo tanto, se hace relevante profundizar en los conocimientos disponibles sobre esta semilla y sus subproductos para poder establecer los posibles mecanismos moleculares que están involucrados en la generación de beneficios para la salud. El objetivo de esta revisión es presentar una actualización de los beneficios asociados al consumo de semilla de chía y sus derivados.


ABSTRACT Chia (Salvia hispanica L.) is a seed native to the southern part of Mexico and Guatemala, which has spread to other Latin American countries. This seed has been used for different purposes throughout history, where it stands out as a food product due to its great versatility, since it can be used as a seed, whole meal flour, fiber and/or protein fractions and oil. Currently, the investigation of new food sources that provide health benefits has managed to collect information on the chemical composition and nutritional value of this seed and its derivatives (flour and oil). For polyunsaturated fatty acid content, n-3 is found, highlighting alpha linolenic acid (C18:3n-3, ALA), which is proposed as an alternative source of this nutrient to foods of other origins. In addition, the fiber content of chia, is mainly insoluble fiber. Regarding the benefits associated with chia consumption, it is closely related to chronic non-communicable diseases such as dyslipidemia, diabetes, type II, hypertension, cancer, among others, managing to attract the attention of researchers to control and prevent these pathologies that are increasing in world population. Therefore, it is relevant to deepen the knowledge available about this seed and its by-products in order to establish the possible molecular mechanisms that are involved in generating health benefits. The objective of this review is to present an update on the benefits associated with consumption of chia seed and its derivatives.

10.
Arq. ciências saúde UNIPAR ; 26(3): 226-232, set-dez. 2022.
Article in Portuguese | LILACS | ID: biblio-1399006

ABSTRACT

A aromaterapia, de acordo com referenciais como Machado e Fernandes Junior (2011), vem ganhando espaço significativo na área da saúde, possuindo diversas propriedades benéficas aos seres humanos quando utilizada de forma correta e adequada, sendo a sálvia um dos compostos naturais empregados por ela. A sálvia, além das propriedades para a saúde física, apresenta benefícios para aspectos de âmbito emocional, incluindo-se a ansiedade, origem de transtornos muito presentes na vida das pessoas. O objetivo do presente estudo consiste em realizar um levantamento bibliográfico sobre a utilização da sálvia na aromaterapia, sobre seus benefícios tanto para a saúde física, quanto para a saúde mental dos indivíduos, principalmente contra a ansiedade. Conclui-se neste trabalho que a sálvia quando utilizada na aromaterapia possui um papel importante contra a ansiedade, além de outros vieses físicos, auxiliando o paciente em uma visão holística, de modo integral, podendo contribuir também para o progresso dos sistemas de saúde.


Aromatherapy, according to references such as Machado and Fernandes Junior (2011), has been gaining significant space in the health area, having several beneficial properties to human beings when used correctly and appropriately, with salvia being one of the natural compounds used by it. Salvia, in addition to its properties for physical health, has benefits for aspects of an emotional scope, including anxiety, the origin of disorders very present in people's lives. The objective of the present study is to carry out a bibliographic survey on the use of sage in aromatherapy, on its benefits for both physical and mental health of individuals, especially against anxiety. It is concluded in this work that sage when used in aromatherapy has an important role against anxiety, in addition to other physical biases, helping the patient in a holistic view, in an integral way, and may also contribute to the progress of health systems.


Según referencias como la de Machado y Fernandes Junior (2011), la aromaterapia ha ido ganando un espacio importante en el área de la salud, con varias propiedades beneficiosas para el ser humano cuando se utiliza de forma correcta y adecuada, y la salvia es uno de los compuestos naturales utilizados por ella. La salvia, además de sus propiedades para la salud física, tiene beneficios para los aspectos emocionales, incluyendo la ansiedad, origen de trastornos muy presentes en la vida de las personas. El objetivo de este estudio es realizar un estudio bibliográfico sobre el uso de la salvia en aromaterapia, sobre sus beneficios para la salud física y mental de las personas, especialmente contra la ansiedad. Se concluye en este trabajo que la salvia cuando se usa en aromaterapia tiene un papel importante contra la ansiedad, además de otras predisposiciones físicas, ayudando al paciente en una visión holística, integral, y también puede contribuir al progreso de los sistemas de salud.


Subject(s)
Anxiety , Aromatherapy , Salvia , Quality of Life , Complementary Therapies , Mental Health , Libraries, Digital , Holistic Health
11.
Acta Pharmaceutica Sinica ; (12): 1909-1917, 2022.
Article in Chinese | WPRIM | ID: wpr-929430

ABSTRACT

In order to reveal the molecular mechanism of the small heat shock proteins (sHSPs) involved in stress resistance and active ingredients accumulation in Salvia miltiorrhiza, a small heat shock protein gene was cloned from Salvia miltiorrhiza by reverse transcription PCR according to the transcriptome data of orange root Salvia miltiorrhiza. The gene is named SmHSP21.8 based on the molecular weight of the protein, and it contains an open reading frame of 585 bp, which encodes 194 amino acids. The results of phylogenetic analysis and amino acid sequence alignment showed that SmHSP21.8 protein belongs to the endoplasmic reticulum (ER) subfamily, and contains a conserved endoplasmic reticulum-specific DPFR-I/V-LE-H/Q-x-P motif at N-terminus. The prokaryotic expression vector pMAL-c2X-SmHSP21.8 was constructed and transformed into E. coli BL21 competent cells. The recombinant protein was successfully expressed after inducted. Temporal and spatial expression analysis showed that SmHSP21.8 gene was the highest expressed in flowers and had significant tissue specificity. The relative expression of the gene was significantly increased in seedlings after induction by 38 ℃, PEG6000, abscisic acid(ABA), and indole-3-acetic acid (IAA), indicating that SmHSP21.8 gene may be involved in abiotic stress such as high temperature and drought, as well as the response to exogenous hormones ABA and IAA. These results lay the foundation for further research on the molecular mechanism of small heat shock proteins involved in adversity stress.

12.
Journal of Pharmaceutical Analysis ; (6): 719-724, 2022.
Article in Chinese | WPRIM | ID: wpr-991097

ABSTRACT

Salvia miltiorrhiza Bge(SMB)has long been used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases.Growing clinical usage has led to a huge demand for artificial planting of SMB.Thus,continuous cropping of SMB is an important challenge that needs to be addressed.Contin-uous cropping can alter the metabolic profile of plants,resulting in poor growth and low yield.In this study,we tried to image the spatial location and variation of endogenous metabolites in continuously cropped SMB using matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI).Spatially resolved expressions of tanshinones,salvianolic acids,polyamines,phenolic acids,amino acids,and oligosaccharides in normal and continuously cropped SMB roots were compared.The ex-pressions of dihydrotanshinone Ⅰ,tanshinone Ⅱ A,dehydromiltirone,miltirone,dehydrotanshinone ⅡA,spermine,salvianolic acid B/E,tetrasaccharide,and pentasaccharide in continuously cropped SMB roots were much lower than those in normal roots.There was little difference in the expressions of caffeic acid and salvianolic acid A in normal and continuously cropped SMB roots.Ferulic acid was more widely distributed in xylem of normal SMB but strongly expressed in xylem,phloem,and cambium of continuously cropped SMB.The spatially resolved metabolite information enhances our understanding of the metabolic signature of continuously cropped SMB and also provides insights into the metabolic ef-fects of continuous cropping in other plants.

13.
Acta Pharmaceutica Sinica ; (12): 2435-2444, 2022.
Article in Chinese | WPRIM | ID: wpr-937047

ABSTRACT

In this study, a method for simultaneous quantitative analysis of 6 salvianolic acids and 4 tanshinones in extracts of Salviae Miltiorrhizae Radix et Rhizoma was established by ultra-high performance liquid chromatography (UHPLC). The semi-biomimetic method was applied to simulate digestion process in vitro, to explore the digestion and transport characters of oral administration through the gastrointestinal tract, and to explain the content ratio changes and bioaccessibility of active ingredients in Salviae Miltiorrhizae Radix et Rhizoma. The results showed that the 10 index components have a good linear relationship in the corresponding concentration range, and the average recovery rate was 91.35% to 105.65%. After simulated digestion in vitro, types of chemical composition in simulated gastric fluid and simulated intestinal fluid digested extracts of Salviae Miltiorrhizae Radix et Rhizoma did not change significantly. While the content ratio of salvianolic acid B and rosmarinic acid decreased, and the content ratio of protocatechuic aldehyde and danshensu increased. In the simulated gastric fluid digestion extract of Salviae Miltiorrhizae Radix et Rhizoma, the order of bioaccessibility was: danshensu (50.19%) > salvianolic acid B (33.44%) > lithospermic acid (27.34%) > salvianolic acid A (21.71%) > rosmarinic acid (12.31%). In the simulated intestinal fluid digestion extract of Salviae Miltiorrhizae Radix et Rhizoma, the order of bioaccessibility was: 15,16-dihydrotanshinone Ⅰ (5.45%) > tanshinone Ⅰ (3.67%) > cryptotanshinone (3.29%) > tanshinone ⅡA (3.01%) > salvianolic acid A (2.39%) > lithospermic acid (1.57%) > salvianolic acid B (1.02%) > danshensu (0.41%) > rosmarinic acid (0.34%). In conclusion, the UHPLC method established in this study can be applied for accurately and sensitively detecting the contents of 6 salvianolic acids and 4 tanshinones in Salviae Miltiorrhizae Radix et Rhizoma. The results of semi-biomimetic extraction showed that not all components were extracted with simulated gastric fluid and simulated intestinal fluid, especially rosmarinic acid and salvianolic acid B. Therefore, in the quality study of Salviae Miltiorrhizae Radix et Rhizoma and its extract, bioavailability should be considered at the same time when select quality markers and determine their content limits.

14.
Acta Pharmaceutica Sinica ; (12): 1375-1386, 2022.
Article in Chinese | WPRIM | ID: wpr-924758

ABSTRACT

We predicted the anti-hepatitis B virus (HBV) active components and mechanism of Salvia miltiorrhiza based on network pharmacology. The active components of S. miltiorrhiza were obtained through TCMSP, PubChem database and literature research. The potential targets of the active components and HBV infection were predicted by SwissTargetPrediction and GeneCards databases, respectively. The protein-protein interaction (PPI) network was constructed by String database. Cytoscape software was adopted to construct a visual network of active component-disease target and perform topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID platform. The molecular docking of key components and core targets was carried out by AutoDock Vina software. We screened out a total of 38 active components and 178 disease-component overlapping targets. Enrichment analyses obtained 405 related GO items and 68 signaling pathways, such as T/B cell receptor signaling pathways, PI3K/AKT signaling pathway, and mTOR signaling pathway. According to the results of molecular docking, most characteristic components of S. miltiorrhiza (miltionone Ⅱ, miltirone, protocatechuic acid, lithospermic acid, protocatechualdehyde) showed good affinity with the key targets (PIK3CA, APP, STAT3,AKT1 and mTOR). Furthermore, the anti-HBV activity of lithospermic acid, the representative active component of S. miltiorrhiza, and its regulation on PI3K/AKT and mTOR signaling pathways were investigated in an HBV replicating mouse model. Animal welfare and experimental procedures follow the regulations of the Animal Ethics and Welfare Committee of Hubei University. The results showed that lithospermic acid significantly inhibited HBV DNA replication, reduced serum HBsAg and HBeAg levels, and decreased the phosphorylation protein expression levels of AKT and mTOR in liver, indicating that lithospermic acid might exert the anti-HBV activity by regulating PI3K/AKT and mTOR signaling pathways.

15.
Int. j. morphol ; 40(5): 1404-1414, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1405270

ABSTRACT

SUMMARY: In Saudi Arabia, it is widely believed that women with reproductive problems can use the extract of the sage plant as a tea drink. This study was conducted to investigate the effects of this herb on the fertility of female rats and embryo implantation. Forty-eight Wistar virgin female rats were divided into four groups at random, with 12 rats in each group. The control group received distilled water orally. The three treatment groups received different concentrations of sage extract: 15, 60, or 100 mg/kg for 14 days before mating, then mated with a male and sacrificed on the 7th day of gestation, the uterine horns removed, and photographed. The total body weight of mothers, weight of uteri and ovaries and number of fetuses were determined. Ovarian and uteri tissues were cut into 5 µ sections and stained with hematoxylin and eosin. Serum FSH, LH were determined by the ELISA method. The present study showed that low dose of sage (15 mg/kg) have no effects on serum concentration levels of FSH and LH hormones, also has no effect on the number of growing follicles. The present study showed a significant differences (P≤0.05) in body weight, ovary and uterus weight in the groups treated with high doses of Salvia officinalis as compared to control group. Also a significant differences (P≤0.05) found in FSH, LH hormones. Histological study showed overall histomorphological structural configurations including growing and matured graafian follicular countable changes, besides a number of corpora lutea and regressed follicles in the treated groups with high doses of Salvia officinalis as compared to control group. The researchers concluded that the extract of the sage plant with high doses can stimulate the growth graafian follicles and improve fertility in female rats.


RESUMEN: En Arabia Saudita, se cree ampliamente que las mujeres con problemas reproductivos pueden usar el extracto de la planta de salvia como bebida de té. Este estudio se realizó para investigar los efectos de esta hierba sobre la fertilidad de las ratas hembra y la implantación del embrión. Se dividieron cuarenta y ocho ratas hembra vírgenes Wistar en cuatro grupos al azar, con 12 ratas en cada grupo. El grupo control recibió agua destilada por vía oral. Los tres grupos de tratamiento recibieron diferentes concentraciones de extracto de salvia: 15, 60 o 100 mg/kg durante 14 días antes del apareamiento, luego se aparearon con un macho y se sacrificaron el día 7 de gestación, se extrajeron los cuernos uterinos y se fotografiaron. Se determinó el peso corporal total de las madres, el peso del útero y los ovarios y el número de fetos. Los tejidos ováricos y uterinos se cortaron en secciones de 5 µ y se tiñeron con hematoxilina y eosina. FSH sérica, LH se determinaron por el método ELISA. El presente estudio mostró que dosis bajas de salvia (15 mg/kg) no tienen efectos sobre los niveles de concentración sérica de las hormonas FSH y LH, tampoco tienen efecto sobre el número de folículos en crecimiento. El presente estudio mostró diferencias significativas (P≤0,05) en el peso corporal, peso de ovario y útero en los grupos tratados con altas dosis de Salvia officinalis en comparación con el grupo control. También se encontraron diferencias significativas (P≤0,05) en las hormonas FSH, LH. El estudio histológico mostró configuraciones estructurales histomorfológicas generales que incluyen cambios contables en los folículos maduros (de Graaf) y en crecimiento, además de una cantidad de cuerpos lúteos y folículos en regresión en los grupos tratados con altas dosis de Salvia officinalis en comparación con el grupo de control. Los investigadores concluyeron que el extracto de la planta de salvia en altas dosis puede estimular el crecimiento de los folículos maduros y mejorar la fertilidad en ratas hembra.


Subject(s)
Animals , Female , Pregnancy , Rats , Embryo Implantation/drug effects , Plant Extracts/administration & dosage , Salvia officinalis/chemistry , Fertility/drug effects , Body Weight , Enzyme-Linked Immunosorbent Assay , Luteinizing Hormone/analysis , Administration, Oral , Follicle Stimulating Hormone/analysis
16.
Acta Pharmaceutica Sinica ; (12): 3675-3685, 2022.
Article in Chinese | WPRIM | ID: wpr-964317

ABSTRACT

2-Oxoglutarate/Fe(II)-dependent dioxygenases (2-ODD) play an important role in plant primary and secondary metabolism. Based on the high-throughput sequencing platform Illumina NovaSeq 6000, the transcriptome of Salvia apiana Jepson was sequenced, and the obtained reads were de novo assembled. A total of 38 534 unigenes were obtained from the transcriptome. The assembled unigenes were annotated and 29 982 unigenes were given functional annotations. The 2-ODD genes were identified from the assembled S. apiana transcriptome database by bioinformatics methods, and the genes were analyzed, including the homology of the sequences, physicochemical characteristics, signal peptides, transmembrane domains, subcellular localization, secondary structure and tertiary structure, etc. The evolutionary relationships and the expression patterns of the identified 2-ODD genes were also analyzed. 39 full-length 2-ODD genes were identified from the transcriptome of S. apiana. The average length of these 2-ODD encoding proteins was 320 amino acids, the molecular weight was about 36.00 kDa, and most of them were hydrophilic proteins. Phylogenetic analysis divided these 2-ODD genes into several subfamilies. Gene expression analysis indicated that the 2-ODD genes were expressed in different parts of S. apiana, and the expression level of most genes was much higher in roots than that in leaves. This study can lay a foundation for further study of 2-ODD genes in S. apiana.

17.
International Journal of Traditional Chinese Medicine ; (6): 667-673, 2022.
Article in Chinese | WPRIM | ID: wpr-954350

ABSTRACT

Objective:To establish methods for HPLC fingerprints and simultaneous determination of multi-index components before and after compatibility of Salvia miltiorrhiza and Angelica sinensis, so as to analyze the dissolution rate of the main compounds. Methods:The extracts of Salvia miltiorrhiza, Angelica sinensis and their compatibility were prepared. The separation was performed on an Eclipse XDB-C18 column (4.6 mm×250 mm,5 μm), mobile phase with 0.1% phosphoric acid aqueous solution-acetonitrile for gradient elution, flow rate at 1.0 ml/min, column temperature was maintained at 35 ℃, and the detection wavelength was set at 280 nm. The HPLC fingerprint were established before and after the compatibility of Salvia miltiorrhiza and Angelica sinensis, and the shared patterns of the fingerprint were obtained to gain chromatographic peaks. The content of 9 components Danshensu, caffeic acid, rosmarinic acid, salvianolic acid B, salvianolic acid A, tanshinone Ⅱ A, ferulic acid, chlorogenic acid and Yangchuanxiong lactone were determinated, and the changes of dissolution rate of each compound before and after the compatibility were analyzed. Results:The determination method for the multi- components with HPLC is precise and the components (waiting to be determinate) in the solution were stable within 48 hours, and the RSD values of each chromatographic peak were <5.0%. The nine components showed good linear relationships within their own ranges, and the recovery rate was in compliance with regulations. The fingerprint similarities of each sample were ?0.9. After the compatibility of Salvia miltiorrhiza and Angelica sinensis, a total of seventeen common peaks were calibrated, ten of which were from Salvia miltiorrhiza, seven from Angelica sinensis. No new components was found under this chromatographic condition. After the combination of these two material medicica decoction, the average dissolution rates of rosmarinic acid, salvianolic acids and Danshensu in Salvia miltiorrhiza were significantly lower than those of the single decoction group ( P<0.05 or P<0.01); the average dissolution rates of caffeic acid in Salvia miltiorrhiza was significantly higher than that of the single decoction group ( P<0.01); the average dissolution rates of chlorogenic acid and ferulic acid in Angelica sinensis were significantly higher than that of the single decoction group ( P<0.05 or P<0.01); the average dissolution rate of Yangchuanxiong lactone after the compatibility was not statistically different than that of single decoction group. Conclusion:The characteristic peaks of HPLC fingerprint of the compatibility of Salvia miltiorrhiza and Angelica sinensis did not increase under this chromatographic condition, which had a significant effect on the dissolution of index components.

18.
Chinese Herbal Medicines ; (4): 592-601, 2022.
Article in Chinese | WPRIM | ID: wpr-953568

ABSTRACT

Objective: Spaceflight has long been perceived as an effective way to improve the quantity and quality of plants with wide applications. In order to obtain stable and inheritable descendants of spaceflight-induced Salvia miltiorrhiza lines, we investigated and analyzed four lines m16, m50, m51, m57 (three individuals of each line) and the ground control (three individuals) of the third generation of spaceflight-induced S. miltiorrhiza from primary/secondary metabolism and antioxidative abilities. Methods: A portable photosynthesis system (Li-6400) with red/blue LED light source was used to perform the photosynthetic characteristics to evaluate their primary productivity. The secondary metabolites (phenolic acids, tanshinones, total phenolics and flavonoids) and antioxidant activity of roots were analyzed to assess their quality. Results: Compared with control, line m16 presented weak photosynthetic ability, but high apparent quantum yield (AQY), higher contents of secondary metabolites, and stronger antioxidative abilities. Line m57 had a strong gas exchange ability, relatively higher secondary metabolites contents, and ascending antioxidative abilities. Lines m50 and m51 were in the middle level of lines m16 and m57. The principal component analysis for all the original data revealed three components including a root-related index, a leaf-related index, and a CO

19.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1354919

ABSTRACT

Objetivo: Investigar la aplicación del niosoma como nanoportador de extracto de salvia (Salvia officinalis L.) mediante espectroscopia y quimiometría. Material y método: En este estudio, se prepararon nanopartículas de niosoma que contienen colesterol y sin colesterol mediante el método de hidratación de película fina. El extracto etanólico de salvia se extrajo mediante microondas y se cargó dentro de las nanopartículas de niosoma. El tamaño de las nanopartículas se determinó mediante microscopía electrónica de barrido de imágenes de campo (FE-SEM). El potencial zeta de los niosomas se determinó mediante dispersión dinámica de luz (DLS). Para investigar el tipo de interacciones entre los tensioactivos y el colesterol utilizados en la estructura del niosoma, se utilizó la espectroscopia infrarroja por transformada de Fourier (FT-IR). Se investigó la liberación de fármaco durante 5 días consecutivos en tampón fosfato salina (PBS) 0/01 M con pH = 7,4 a T = 37ºC. Resultados: El potencial zeta de los niosomas con colesterol y sin colesterol fue de -24 / 1 y -15 / 6 mv. La capacidad de carga del fármaco en el rango de concentración (1-3% p / p de niosum) para ambos tipos de niosoma estuvo entre 61% y 93%. Conclusión: Estos resultados muestran que la tasa de liberación de niosma con colesterol es significativamente más regular y más baja que la de niosoma sin colesterol. En general, se puede concluir que el niosoma puede ser un nanoportador adecuado para el suministro de extracto hidrófilo de la salvia.


Objetive:Investigation the application of niosome as a nanocarrier for sage (Salvia officinalis L.) extract by spectroscopy and chemometrics. In this Material and Method:study,niosomenanoparticlescontainingcholesterolandwithoutcholesterolwere prepared by thin film hydration method. Ethanol extract of sage was extracted by microwave and loaded inside the niosome nanoparticles. The size of the nanoparticles was determined by field imaging scanning electron microscopy (FE-SEM). The zeta potential of the niosomes was determined by Dynamic light scattering (DLS). to investigate the type of interactions between surfactants and cholesterol used in the niosome structure, Fourier transform infrared spectroscopy (FT-IR) was used. Drug release was investigated for 5 consecutive days in phosphate buffer salin (PBS) 0/01 M with pH=7.4 at T=370C. The zeta potential of the niosomes with cholesterol and without Results:cholesterol was -24/1&-15/6 mv . The loading capacity of the drug in the concentration range (1-3% w / w of niosum) for both types of niosome was between 61% and 93%. Conclusion:This results show that the release rate of niosme with cholesterol is significantly more regular and lower than of niosome without cholesterol. In general, it can be concluded that niosome can be a suitable nano-carrier for delivery of hydrophilic extract of the sage.

20.
International Journal of Traditional Chinese Medicine ; (6): 1054-1057, 2021.
Article in Chinese | WPRIM | ID: wpr-907671

ABSTRACT

The signal transduction pathway of VEGF combing with vascular endothelial growth factor receptor (VEGFR) is not only key pathway to regulate angiogenesis, but also the focus of basic research and important target of clinical treatment. Salvia miltiorrhiza extract and its main compound salvianolic acid B also have two-way regulative effect on VEGF/VEGFR signal pathway in different diseases. Tanshinone Ⅰ , tanshinone Ⅱ A and cryptotanshinone could inhibit the angiogenesis throughthis pathway, and sodium tanshinone ⅡA sulfonate could promote the angiogenesis through this pathway.

SELECTION OF CITATIONS
SEARCH DETAIL